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Abstract
The 0.6 °C warming observed in global temperature datasets from 1940 to 1960 to 2000–2020 can be partially due to urban 
heat island (UHI) and other non-climatic biases in the underlying data, although several previous studies have argued to the 
contrary. Here we identify land regions where such biases could be present by locally evaluating their diurnal temperature 
range (DTR = TMax −  TMin trends between the decades 1945–1954 and 2005–2014 and between the decades 1951–1960 
and 1991–2000 versus their synthetic hindcasts produced by the CMIP5 models. Vast regions of Asia (in particular Russia 
and China) and North America, a significant part of Europe, part of Oceania, and relatively small parts of South America 
(in particular Colombia and Venezuela) and Africa show DTR reductions up to 0.5–1.5 °C larger than the hindcasted ones, 
mostly where fast urbanization has occurred, such as in central-east China. Besides, it is found: (1) from May to October,  TMax 
globally warmed 40% less than the hindcast; (2) in Greenland, which appears nearly free of any non-climatic contamination, 
 TMean warmed about 50% less than the hindcast; (3) the world macro-regions with, on average, the lowest DTR reductions 
and with low urbanization (60S-30N:120 W–90 E and 60 S–10 N:90 E–180 E: Central and South America, Africa, and 
Oceania) warmed about 20–30% less than the models’ hindcast. Yet, the world macro-region with, on average, the largest 
DTR reductions and with high urbanization (30 N–80 N:180 W–180 E: most of North America, Europe, and Central Asia) 
warmed just a little bit more (5%) than the hindcast, which indicates that the models well agree only with potentially prob-
lematic temperature records. Indeed, also tree-based proxy temperature reconstructions covering the 30°N–70°N land area 
produce significantly less warming than the correspondent instrumentally-based temperature record since 1980. Finally, 
we compare land and sea surface temperature data versus their CMIP5 simulations and find that 25–45% of the 1 °C land 
warming from 1940–1960 to 2000–2020 could be due to non-climatic biases. By merging the sea surface temperature record 
(assumed to be correct) and an adjusted land temperature record based on the model prediction, the global warming during 
the same period is found to be 15–25% lower than reported. The corrected warming is compatible with that shown by the 
satellite UAH MSU v6.0 low troposphere global temperature record since 1979. Implications for climate model evaluation 
and future global warming estimates are briefly addressed.
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1 Introduction

There has been considerable debate in the literature over 
the extent (if any) to which non-climatic biases – in par-
ticular, those due to urbanization elements such as the 
urban heat, aerosol emissions, and other factors—have 

contaminated regional, hemispheric and global temperature 
records, and artificially raised, or in any way altered global 
warming trends since the 1940s (e.g.: Freitas et al. 2013; 
Hansen et al. 2010; McKitrick and Michaels 2007; Menne 
et al. 2018; Pielke et al. 2007a, b; Scafetta and Ouyang 2019; 
Soon et al. 2015, 2018; and many others).

The issue is of great concern because from 1950 to 2020 
the world population increased from 2.5 billion to 7.5 bil-
lion (Population Division of the Department of Economic 
and Social Affairs of the United Nations: https ://popul ation 
.un.org/wup/). Urbanization did not develop uniformly. In 
fact, Fig. 1a shows that the world population density is not 
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uniformly distributed on the globe, and Fig. 1b shows how 
the world city population has increased reporting data for 
the year 1950, 1990, 2015 and the projected values for 2030 
(https ://popul ation .un.org/wup/). For example, from 1950 to 
2015 in China the urban population increased 12 times, from 
65 million to 775 million whereas in Europe it just doubled 
by increasing from 284 million (1950) to 547 million (2015).

Urban areas are usually warmer than the surrounding 
rural ones (Mitchell 1953, 1961; Landsberg 1981). This 
is commonly known as the urban heat island (UHI) effect 

(Oke 1987; Stull 1988; Kershaw 2017). Estimating its rel-
evance is still very challenging.

For example, using a few historical stations located inside 
and outside London, some authors found that the city’s UHI 
could be around 1.1 °C (Jones et al. 2009); Wolf and Mc 
Gregor (2013) found a UHI of 2.8 °C in the summer tem-
perature from 1990 to 2006; Wilby et al. (2011) found that 
UHI intensity depends on weather conditions. The above 
values vary from each other because different periods were 
used, and few and different historical meteorological stations 

Fig. 1  a World population density in 2015. (GPWv4 Population Density, v4.11_2015; https ://sedac .ciesi n.colum bia.edu/data/colle ction /gpw-v4). 
b World city population in 1950, 1990, 2015 and the one projected in 2030 (https ://popul ation .un.org/wup/)

https://population.un.org/wup/
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://population.un.org/wup/
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located in places qualitatively labeled as “urban” or “rural” 
were compared. More extended and detailed studies of Lon-
don’s thermal distribution using satellite temperature images 
and hourly air temperature data from 77 stations optimally 
displaced in the city area found that, in specific hot weather 
and low wind conditions, the air temperature of the city’s 
center can also become 6–9 °C warmer than the surrounding 
rural area (Kershaw 2017; Kolokotroni et al. 2006; Koloko-
troni and Giridharan 2008; Watkins et al. 2002a, b; Wolf and 
McGregor 2013; Holderness et al. 2013).

UHI generally occurs because of the direct release of 
urban anthropogenic heat and of the cities’ dense concen-
trations of materials like asphalt, concrete, and buildings 
(Rizwan et al. 2008). Urban materials absorb more heat 
during the daytime and release it more slowly at night 
than the soil and vegetation that characterize the rural 
areas. Besides, wind ventilation is lower in urban canyons, 
which contributes to keeping the cities warm (Dimoudi and 
Nikolopoulou 2003).

UHIs create a genuine localized climatic effect. Thus, the 
individual meteorological records are not technically biased; 
as a matter of fact, they are recording genuine localized 
warming. However, although in stationary conditions UHI 
should not change climatic averages and trends, a warming 
trend occurs in meteorological records when cooler rural 
landscapes are progressively transformed and included into 
warmer urban areas (e.g.: Saaroni et al. 2000; Kim and 
Baik 2004; Gaffin et al. 2008; Emmanuel and Krüger 2012).

Localized warming trends are of concern when these 
records are used for calculating regional, hemispheric, or 
global temperature climatic trends. Moreover, urban areas 
only comprise a few percent of the land area, but urban 
stations comprise a much larger fraction of the used ones, 
and this fraction is typically greater for the longest station 
records. Therefore, urbanization bias is essentially an over-
representation sampling problem.

UHI effects have been often studied by attempting to 
distinguish urban from rural land regions from satellite 
(Wickham et al. 2013), reanalysis (Compo et al. 2013), and 
homogeneity algorithms (Menne et al. 2018). More specifi-
cally, some studies attempted to determine any UHI bias 
by comparing urban temperature records against those of 
the surrounding rural areas (e.g.: IPCC AR5 2013; Hansen 
et al. 2010; Hausfather et al. 2013; Parker 2006). Stew-
art and Oke (2012) discussed in detail the challenges in 
estimating UHI biases by comparing urban and rural sta-
tions, which are often all partially affected by urbanization. 
Another approach tried to separate urban and rural regions 
using nightlight brightness metadata (Peterson 2003). The 
main conclusion was that the climatic series obtained after 
homogenization could be nearly free of UHI bias (e.g., Haus-
father et al. 2013; Venema et al. 2012; Mestre et al. 2013; 
Freitas et al. 2013). Yet, these mathematical approaches are 

specifically designed for reducing different kinds of non-
climatic biases such as step-change biases linked to station 
moves, changes in instrumentation, etc. Trend biases, such 
as those expected from urbanization development, are much 
more challenging to correct.

Menne et  al. (2018) acknowledged the problem and 
adopted a specific algorithm claimed to remove UHI by a 
series of steps that was supposed to work at least for those 
sites that were considered to be more affected, e.g. Reno, 
Phoenix in the USA, and Shenzhen in China.

Yet, all the above methodologies have serious limits and 
the issue of whether the processed climatic records are still 
contaminated by UHI or other non-climatic biases remains. 
In fact, when entire extended regions are homogenized, 
UHIs can influence the same rural regions used to detect 
and quantify the bias of the nearby urban centers (e.g.: 
de Gaetano 2006; Pielke et al. 2007a, b; Soon et al. 2015, 
2018).

Essentially, the current temperature homogenization 
algorithms (e.g.: Menne and Williams 2009; Mestre et al. 
2013) effectively use the trends of neighboring stations to 
determine the climatic trends whenever an apparent non-
climatic bias is identified (e.g., from a station move). If the 
station records for several of these neighbors are affected 
by urbanization bias, then some of that urbanization bias 
will be aliased onto the target station’s record, even if the 
target station is still rural and had originally been unaffected 
by urbanization bias. For example, such a homogenization 
process tends to blend the trends of all stations towards the 
average of the neighbors (D’Aleo 2016; Soon 2018). In gen-
eral, if the neighboring stations have each been affected by 
urbanization bias (or other non-climatic biases) to differ-
ent extents, then the most urbanized stations will have their 
urbanization bias partially reduced. But, simultaneously, 
the most rural stations will have warming trends artificially 
added: that is, the homogenization process tends towards 
“urban blending”.

To make matters worse, these blended biases can no 
longer be identified by the standard approaches of compar-
ing rural and urban stations, since the homogenized station 
records of the rural stations now contain this blended urban 
bias. Soon et al. (2015, 2018) argued that this has contrib-
uted to many of the studies using homogenized temperature 
datasets failing to identify evidence of major non-climatic 
biases. The consequence is that land climatic records should 
show warming trends that can only partially be associated 
with real climatic changes.

Moreover, any criteria attempting to discriminate some 
regions as “urban” and others as “rural”, where only the 
former ones could be affected by UHI, could be unsatisfac-
tory. Indeed, the heat produced by the urban areas can also 
be transported toward the surrounding areas by wind. For 
example, in London UHI varies from 9 to 1 °C as wind 
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speed increases from 1 to 7 m/s (Kolokotroni et al. 2006; 
Kolokotroni and Giridharan 2008), which indicates that 
wind extract and transport a large amount of the urban heat 
toward the nearby surrounding rural areas. Therefore, also 
the so-called “rural” areas can be directly contaminated by 
the surrounding UHIs. This has likely happened in extended 
and densely populated regions such as those found in cen-
tral-east China (cf. Scafetta and Ouyang 2019). Besides, as 
explained above, homogenization approaches interpolate 
the temperature data among far stations and contaminate 
large regions by artificially enlarging the UHIs’ area of influ-
ence even for hundreds of kilometers (cf.: de Gaetano 2006; 
Pielke et al. 2007a, b; Soon et al. 2015, 2018).

Solving the urbanization problem is challenging also 
because the definitions of “rural” and “urban” often differ 
substantially between studies, and a “rural” station in one 
study might be classified as “urban” according to another 
study (and vice versa) (Stewart 2011; Stewart and Oke 
2012). Moreover, UHI can develop in small urban settle-
ments and villages as well (e.g.: Hinkel et al. 2003; Szegedi 
et al. 2013; Dienst et al. 2018). Thus, there is no guarantee 
that UHI or other local biases can be efficiently removed 
from the data using some mathematical algorithm. Yet, if the 
net magnitude of the biases in the adopted climatic records, 
which are already processed by homogenization, is greater 
than currently assumed, this could have important implica-
tions for climate change estimation, attributions, and climate 
model validation.

Uncertainty and underestimation of urbanization biases 
can artificially increase the warming trends in several Earth’s 
regions (e.g.: Balling Jr. and Idso 1989; Kato 1996; Wang 
and Ge 2012). McKitrick and Michaels (2007) claimed 
that UHI effects could reduce the estimated 1980–2002 
global average temperature trend over land by about half. 
Soon et al. (2018) reviewed the literature stressing the cur-
rent large uncertainty regarding the surface air temperature 
warming trends over China during the last century due to 
non-climatic urbanization biases (cf.: Wang et al. 2001, 
2004; Tang and Ren 2005; Tang et al. 2010; Ren et al. 2012, 
2017; Cao et al. 2013; Ding et al. 2014; Wang et al. 2014; 
Soon et al. 2015; Li et al. 2017). Temperature reconstruc-
tions from tree-rings show significantly lower warming 
trends than the corresponding land instrumental temperature 
averages since the 1970s (Esper et al. 2012, 2018).

There are also certain specific cases – chiefly in arid 
regions – where the process of urbanization could lead to 
a net cooling, e.g., through increased shading caused by 
buildings and the presence of more water: oases are obvi-
ous examples (cf.: Stohlgren et al. 1998; Rasul et al. 2015). 
Non-climatic biases are also controlled by variations in the 
capacity of urban and rural areas to evaporate water (Li 
et al. 2019), by local microclimates (Fall et al. 2011) and by 
changes in instrumentation (Hubbard and Lin 2006) and in 

the observation time (Karl et al. 1986). Finally, non-climatic 
biases in temperature records could be induced by alternative 
factors including land-use change, aerosols, and others (cf.: 
Robinson et al. 1995; Gallo et al. 1996; Dai et al. 1999; Bra-
ganza et al. 2004; Makowski et al. 2008; Lim et al. 2005).

The purpose of the current work is to propose a method-
ology aimed to identify the regions where possible urbani-
zation or other unresolved local non-climatic biases could 
be still present in the available climatic temperature records 
used to evaluate global warming trends.

We propose a workaround methodology by extending the 
analysis proposed in Scafetta and Ouyang (2019) for China. 
The idea is that non-climatic biases could be localized using 
some property of the atmospheric boundary layer physics. 
This physics predicts that UHI effects are not constant in 
time but vary according to weather conditions, season, and, 
above all, the time of day.

The strategy is to compare various temperature estimates 
 (TMean,  TMax,  TMin) and their climate model simulations, 
and to process the found divergences at global, macro, and 
local scales to empirically quantify how much the land and 
the global surface temperature warming could be fictitious 
because of non-climatic biases affecting the records.

2  Physical background

Although temperature records could be affected by several 
non-climatic biases, in this section we focus mainly on pos-
sible urban contaminations such as those due to UHI and 
aerosol emission.

UHI is generally most pronounced at nighttime than dur-
ing daytime; that is, urbanization makes the minimum tem-
perature  (TMin) to warm more than the maximum one  (TMax) 
(cf.: Oke 1987; Stull 1988; Kershaw 2017). The difference 
between  TMax and  TMin is referred to as the diurnal tempera-
ture range (DTR). A larger warming trend at nighttime than 
during daytime leads to a DTR negative trend in time.

There is a long history of studies on DTR changes. One 
of the earliest papers looking at this was Karl et al. (1993) 
and others followed (Easterling et al. 1997; Vose et al. 2004; 
Thorne et al. 2016a, b; and others). These papers also dis-
cussed some ideas as to why  TMin could warm more than 
 TMax in specific situations. Figure 2 schematically summa-
rizes the physics involved in the process.

The atmospheric boundary layer physics predicts that 
during daytime the surface, including the urban areas, gets 
warmed by sunlight, which activates a convective instabil-
ity resulting in a mostly vertical flux of warm air parcels. 
In other words, during the daytime, the atmospheric cap-
ping inversion layer rises and the warm air produced by the 
city more easily diffuses vertically than horizontally, which 
reduced the possibility that the surrounding rural areas could 
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get warmed by it. Essentially, vertical air-convection pro-
cesses favor heat dissipation.

On the contrary, during the nighttime, the UHI area of 
influence spreads around becoming larger because the sur-
face cools fast forming a low capping inversion layer that 
reduces vertical air convection flux. Consequently, nocturnal 
surface winds can more easily diffuse a city’s warm air into 
the surrounding region and warm it. Rural and suburban 
areas are, therefore, more exposed to the heat produced by 
their surrounding UHIs during nights and, consequently, 
cool less than what would be expected. Thus, urbanization 
can make warming trends of station placed nearby urban 
centers anomalously higher during the night than during 
the day. Also, McNider et al. (2012) showed that a long-
term increase in minimum temperatures could derive from a 
redistribution of heat by changes in wind and air turbulence 
and not just by an accumulation of heat in the boundary 
layer. Consequently, these authors concluded that mini-
mum temperatures could be a misleading global warming 
metric, which implies that also mean temperatures could 
be misleading.

DTR biases could emerge also for other reasons such 
as the building-up of sulfate or other aerosols from fos-
sil fuel combustion within the cities in the lower tropo-
sphere, which should reduce daytime warming since the 
early 1950s. For example, Thorne et al. (2016b) showed 
time series (for global land, North America, Europe, and 
Australia) with significant year-to-year variability: from 
1900 to 1950 DTR values were relatively constant, then 
they decrease from 1950 to the 1980s, and then remained 
at their newer level since. The proposed reason for the 
drop was that power station emissions of sulfate aerosols 
were reduced leading to a cleaner lower troposphere. How-
ever, Zdunkowski et al. (1976) also claimed that aerosols 
should cool both  TMax and  TMin. In fact, aerosols reduce 
the amount of solar radiation reaching the surface and this 
makes a city cooler during the daytime. In such a situation, 
a city should be cooler also during nighttime as its warmth 
is mostly stored during the sunny hours. UHI intensity is 
also controlled by variations in the capacity of urban and 
rural areas to evaporate water (Li et al. 2019) and by local 
microclimates (Fall et al. 2011). DTR could be also influ-
enced by changes in instrumentation too (Hubbard and 

Fig. 2  Boundary layer structure over a city and its surrounding area. 
Top, daytime boundary layers; middle, nocturnal boundary layers; 
bottom, microscale structures showing how the wind extracts heat 
from an urban area and transports it away from it toward the rural 

areas. Planetary boundary layer (PBL); Urban boundary layer (UBL); 
Urban canopy layer (UCL). (Adapted from Kershaw  2017; from 
Scafetta and Ouyang 2019)
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Lin 2006) and in the observation time (Karl et al. 1986), 
but these biases are supposed to be properly handled by 
the homogenization algorithms.

In any case, Ren and Zhou (2014) and Jiang et al. (2020) 
have confirmed that there is a significant asymmetric warm-
ing rate between  Tmin and  Tmax around most of the meteoro-
logical stations in China that experienced rapid urbanization, 
and a similar situation could have occurred in similar condi-
tions everywhere in the world.

3  Data

We use the following data:

1. The Climate Research Unit (CRU) (University of East 
Anglia)  TMax and  TMin global land surface temperature 
datasets (CRU-TS4.04) (Harris et al. 2014, 2020; Jones 
et  al. 2012) (https ://cruda ta.uea.ac.uk/cru/data/hrg). 
These records cover the period from 1901 to 1919 with a 
spatial resolution of up to 0.5° × 0.5°. The same records 
are also available at Climate Change Atlas at KNMI Cli-
mate Explorer (https ://clime xp.knmi.nl/plot_atlas _form.
py). The regions with missing or too few temperature 
data are about 5% of the world’s land surface. These 
places are left in white on the maps and include most 
of India and Pakistan, most of the Amazonian region 
in Brazil, and extended parts of Africa. In these regions 
the  TMin and  TMax records are missing or, as it happens 
for example for India, they are present but are character-
ized by identical temperature anomalies between 1945 
and 1954 and 2005–2014 as if they were derived from 
mean temperature values so that DTR values are zero. 
We also use the HadCRUT4.6 record for the land and 
ocean surface temperature and for the global surface 
temperature (Morice et al. 2012), and the UAH MSU 
v6.0 low troposphere satellite global temperature record 
(Spencer et al. 2017).

2. The Coupled Model Intercomparison Project Phase 5 
(CMIP5: https ://cmip.llnl.gov/cmip5 /) (full set) GCM 
mean simulations for the  Tmax and  Tmin temperature at 
the surface available at Climate Change Atlas at KNMI 
Climate Explorer (https ://clime xp.knmi.nl/plot_atlas 
_form.py) with a spatial resolution of 2.5° × 2.5°. The 
records were interpolated to fit a 0.5° × 0.5° grid. The 
chosen computer simulations adopt the full known set 
of historical radiative forcings from 1860 to 2005. From 
2006 to 2020 the simulations available for alternative 
RCP (2.6, 4.5, 6.0, 8.5) are statistically equivalent (cf.: 
Bindoff et al. 2013).

Herein, the ensemble mean rather than the envelope of 
the full range of models or individual model runs is used 

because the latter appear too random at the required dec-
adal scale. This random “internal variability” tends to can-
cel out in the ensemble mean (cf.: Scafetta 2013; Connolly 
et al. 2019). The CMIP5 ensemble mean could be considered 
as an ideal and optimized syntetic climate record that com-
bines the performance of all models. Its statistical error is 
supposed to be very small, and it is herein ignored, because 
it would be given by the entire dispersion among the models’ 
single runs divided by the squared root of the number of all 
used simulations, which are more than 100.

4  Method

The proposed analysis is based on the study of the negative 
change of the DTR (− DTR = TMin −   TMax) metric over a 
60-year period. This measure positively correlates with the 
warming bias that UHI would usually induce and, therefore, 
it could be more intuitive for representing UHI warming 
biases.

Our methodological approach aims to determine whether 
some urbanization or other non-climatic biases are still 
present in the climatic surface land records obtained after 
homogenization of the individual station records. The 
assumption to be tested is whether the climatic processed 
global surface land temperature databases are free or at least 
little affected by local thermal contaminations such as UHI. 
To check the situation we determine the warming divergence 
observed between nocturnal and diurnal hours between the 
decades 1945–1954 and 2005–2014 in each region where the 
data are available by analyzing and comparing the available 
 TMin and  TMax local climatic records throughout the world.

The physical complexity of the process makes very 
challenging any interpretation of the data. We propose 
to compare the estimated DTR changes against their 
predictions made by the GCM ensemble mean simu-
lations (Bindoff et  al.  2013). The reason why such a 
comparison could be relevant is that the DTR changes 
are known to have multiple possible causes (e.g.: cloud 
cover, wind, urban heat, land-use change, aerosols, water 
vapor, and greenhouse gases) and different regions can 
be affected by different factors (cf.: Robinson et al. 1995; 
Gallo et al. 1996; Dai et al. 1999; Braganza et al. 2004; 
Makowski et al. 2008; Lim et al. 2005). These climate 
models are supposed, at least theoretically, to properly 
simulate the global and local climatic variations induced 
by cloud cover, land-use change, aerosols, water vapor, 
greenhouse gases, etc. A good correlation has also been 
found between the DTR reduction from 1940 to 2014 and 
the precipitation series for the northern hemisphere (Sun 
et al. 2019), but once again the models are supposed, at 
least in principle, to reproduce precipitation trends on 
such a long time scale. Thus, the climate models should, 

https://crudata.uea.ac.uk/cru/data/hrg
https://climexp.knmi.nl/plot_atlas_form.py
https://climexp.knmi.nl/plot_atlas_form.py
https://cmip.llnl.gov/cmip5/
https://climexp.knmi.nl/plot_atlas_form.py
https://climexp.knmi.nl/plot_atlas_form.py
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at least teoretically, predict local and global changes in 
DTR due to real climatic changes, at least on sufficiently 
long periods such as 60 years. However, the climate mod-
els do not parameterize the cities so that significant dif-
ferences between the observed DTR climatic changes and 
those predicted by the models could highlight possible 
urbanization biases, particularly in highly densely popu-
lated regions. In any case, other non-climatic biases could 
be involved as well, so that our results could have a wider 
interpretation as well.

For each of the four analyzed records and every grid 
cell, the  TMin and  TMax mean values for the decades 
1945–1954 and 2005–2014 are evaluated together with the 
respective temperature variation ΔTMax and ΔTMin between 
the same decades: this gives the warming observed in  TMax 
and  TMin in each place from the decadal averages centered 
on 1950 and 2010.

The above 60-year period was chosen for the follow-
ing reasons: (1) it covers the post World War II period 
when the world has experienced a large population and 
urbanization increase, and anthropogenic global warming; 
(2) it avoids possible statistical biases due to the likely 
presence of a quasi 60-year natural climatic cycle that is 
detected across the world in several climatic records (e.g.: 
Gervais 2016; Scafetta 2013, 2014; Scafetta et al. 2020; 
Wyatt and Curry 2014; and many others); (3) it avoids 
other possible statistical biases due to the spatial inho-
mogeneity of the climatic effects of the strong El-Nino 
warming event that occurred between 2015 and 2016 (e.g. 
Scafetta et al. 2017a, b).

The proposed DTR analysis uses monthly averages 
since January 1945 when the CRU-TS4 record covers most 
of the land surface. In any case, only the 0.5° × 0.5° cells 
that contain at least 60 months of data for each decade 
(e.g. 1945–1954 and 2005–2014) are taken into account 
to avoid biases due to data deficiency.

The  TMin to  TMax warming divergence from 1945 to 
1954 to 2005–2014 is evaluated for each grid cell using the 
equations:

Finally, the difference between Eqs. 1 and 2 is calculated 
for each grid cell. This gives the desired local temperature 
bias estimate:

This operation is repeated for the CRU-TS4 data and the 
CMIP5 GCMs ensemble mean simulations, respectively. 
The analysis is then repeated also for the period between 
the decades 1951–1960 and 1991–2000, and it is repeated 
for both data and the CMIP5 ensemble means.

Finally, additional analyses are proposed by com-
paring mean instrumental temperature records for land 
and sea surface, and temperature reconstructions from 
tree-rings to attempt to evaluate the bias induced in by 
non-climatic mechanisms.

(1)Divdata = (ΔTMin − ΔTMax)data

(2)Divmodel = (ΔTMin − ΔTMax)model

(3)Bias = Divdata − Divmodel

Fig. 3  TMin and  TMax global surface records for both the CRU-TS4 data (a) and the CMIP5 GCM ensemble mean simulations overland alone (b) 
and (bottom) their differences (c and d)
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5  DTR trend analysis

Figure 3a, b shows the  TMin and  TMax global surface records 
for both the CRU-TS4 data and the CMIP5 GCM ensemble 
mean simulations overland alone. The records are anoma-
lies relative to the decade 1945–1954. The bottom panels 
(Fig. 3c, d) show the  TMin minus  TMax, namely the negative 
DTR records, in both cases.

From the decades 1945–1954 to 2005–2014 in the CRU-
TS4 data  TMin warmed by about 1.0 °C while  TMax warmed 
by about 0.75 °C. On the contrary, in the computer simula-
tion  TMin warmed by about 1.05 °C while  TMax warmed by 
about 0.95 °C. In both cases,  TMin warmed more than  TMax. 
However, regarding the temperature data, from the dec-
ade 1945–1954 to 2005–2014  TMin warmed by 0.25 °C more 
than  TMax, while for the computer simulations  TMin warmed 
by 0.10 °C more than  TMax. The data also show that most 
of such 0.25 °C warming occurred between 1950 and 1990, 
while during the same period the computer simulations show 

that  TMin warmed just about 0.05 °C more than  TMax. This 
anomaly could have been caused because from 1950 to 1990 
a significant industrialization and urbanization occurred in 
vast regions of the Earth such as in Europe, in the USA, and 
other places. From 1900 to 1950  TMin and  TMax trends are 
nearly equivalent.

Figure  4 repeats the same analysis shown in Fig.  3 
but now the Earth’s surface is divided into three regions: 
a northern region from latitude 25° N to 90° N; an inter-
tropical region with latitude between 25° S to 25° N; and a 
southern region with latitude between 90°S and 25°S. The 
results are also qualitatively similar. In all regions and from 
1950 to 1990, a strong divergence of  TMin relative to  TMax 
is observed: Figure 4a, b, and it is larger for the northern 
and southern regions (about 0.35 °C) than for the intertropi-
cal region (about 1.5 °C). However, after 2000 the southern 
region shows nearly compatible  TMin and  TMax values. On 
the contrary, the CMIP5 GCM ensemble mean simulations 
show  TMin values slightly larger than the  TMax ones: Fig-
ure 4c, d. From 1950 to 1990 the northern and intertropical 

Fig. 4  As in Fig. 3 but the Earth’s surface has been divided into three regions: (left) latitude 25° N to 90° N; (center) latitude between 25° S to 
25° N; (right) latitude between 90°S and 25°S. a Temperature data; b DTR of the data; c Synthetic data; d DTR of the synthetic data
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regions are similar (the divergence is about 0.1 °C) while for 
the southern region the divergence is about 0.05 °C.

Table 1 collects the statistics derived from the records 
depicted in Figs. 3 and 4 for the decades 1945–1954 to 
2005–2014.

Figure 5a, b depict the world distribution of the diver-
gence between  TMin and  TMax between 1945 and 1954 and 
2005–2014, and between 1951 and 1960 and 1991–2000 
(using Eqs. 1 and 2) using the CRU-TS4 data. Figure 6a, b 
do the same using the CMIP5 GCM ensemble mean simula-
tion. The two figures show quite different patterns.

Both figures show that  TMin has usually warmed more 
than  TMax in most regions. However, Fig.  5 highlights 
that the temperature records are characterized by a strong 
regional variability spanning between − 2 and 2 °C. On 
the contrary, Fig. 6 shows that the CMIP5 GCM ensemble 
mean temperature simulations produce, as expected, nearly 
spatially homogeneous results. These are characterized by 
a much less regional variability spanning between − 0.3 and 
0.5 °C.

Figure 5 shows that vast regions of Asia (in particular 
Russia and China) and North America, a significant part 
of Europe and Australia, and part of South America (in 
particular Colombia and Venezuela) are characterized by a 
 TMin-TMax warming divergence up to 1–2 °C (red-dark red 
color). Africa too shows a significant variability but overall 
there is a balance between positive (red) and negative (blue) 
values. Across the world, the only negative values (blue) 
are found in Algeria, between Niger and Chad, north-east 
Ethiopia, west Yemen, and some regions of Kazakhstan and 
South Australia. These places are mostly arid and in such 
environments urbanization may have an inverted effect by 

generating cool islands (e.g. oases) instead of warm ones 
(cf. Rasul et al. 2015). Central Bolivia too is blue, but there 
the inverted effect could have been induced by the intense 
deforestation of the place which increased the local albedo. 
This extended land transformation is evident from Google 
Earth satellite photographs (cf. Killeen et al. 2008; Müller 
et al. 2012).

Over the ocean, Fig. 5a shows a white color because the 
CRU-TS4  TMin and  TMax data cover only the land. The same 
happens for those land regions with missing data. The data 
coverage improves in Fig. 5b. Investigating this issue goes 
beyond the purpose of the present work.

Figure 5 shows clear patterns whose spatial resolution 
may also depend on the land distribution of the weather 
stations used to build the CRU-TS4 database, which does 
not cover uniformly the entire world surface and varied in 
time (Harris et al. 2020). However, this sampling problem 
is herein ignored because the issue here is to study the tem-
perature coverage as contained in the CRU-TS4 database, 
not the performance of single meteorological stations.

Figure 6 shows that the climate models show that  TMin 
and  TMax warmed in the same way (nearly white color) over 
the oceans. However, from 1945 to 1954 and 2005–2014, in 
the polar regions,  TMin warmed slightly more than  TMax up 
to 0.5 °C (from coral to light violet color) as in most land 
regions. For most of Europe, Turkey, north Arabia, south of 
United States of America, Mexico, Brazil, south Argentina, 
south Chile and South Africa, the CMIP5 model ensemble 
mean predicts that  TMax had to warm just a little bit more (up 
to 0.2 °C) than  TMin (yellow color).

Using single model runs, a larger regional DTR variabil-
ity during the same periods can be found. However, this 
variability does not correlate with that observed in the data. 
In fact, it appears quite random, as indirectly demonstrated 
by the very low regional DTR variability found in the mean 
ensemble simulations shown in Fig. 6, which indicates that 
the various models show very different local patterns that 
contradict each other while they are supposed to reproduce 
climatic patterns on a 60-year period also locally.

Figure 7 shows the difference between the results depicted 
in Figs. 5 and 6 using Eq. 3. The figure highlights the spatial 
distribution of the discrepancy between the results obtained 
using the  TMin and  TMax records and the synthetic ones 
obtained with the CMIP5 GCMs. The results are qualita-
tively similar to those commented above in Fig. 5.

Figure 7 reveals that extended land regions at 30° N–50° 
N and 65° N–75° N (mostly Siberia) are characterized by a 
strong positive bias that is on average up to 0.5 °C. In gen-
eral, the 20°-80° N region, which is also the most populated 
one, has a strong positive bias (between 0.0 and 0.5 °C). The 
20° S–20° N region has a moderate positive bias (between 
0.0 and 0.2 °C). Finally, the 20° S–60° S region is more 

Table 1  Temperature variation ΔTMin and ΔTMax, and their difference 
between the decades 1945–1954 and 2005–2014 for the CRU-TS4 
data and the CMIP5 GCM ensemble mean simulations. See Figs.  3 
and 4

World ΔTMin ΔTMax ΔTMin − ΔTMax

°C °C °C

CRU-TS4.03  (Fig. 3)  0.99 ± 0.03 0.75 ± 0.03 0.24 ± 0.04
CMIP5 GCM Land  

(Fig. 3)
1.04 ± 0.03 0.92 ± 0.03 0.12 ± 0.04

25° N : 90° 
N  (Fig. 4)

CRU-TS4.03 1.23 ± 0.05 0.86 ± 0.06 0.37 ± 0.08
CMIP5 GCM Land 1.23 ± 0.03 1.08 ± 0.03 0.15 ± 0.04
25° S : 25° N  (Fig. 4)
CRU-TS4.03 0.73 ± 0.05 0.60 ± 0.05 0.12 ± 0.07
CMIP5 GCM Land 0.88 ± 0.03 0.78 ± 0.03 0.10 ± 0.04
90° S : 25° S  (Fig. 4)
CRU-TS4.03 0.68 ± 0.03 0.72 ± 0.07 − 0.03 ± 0.08
CMIP5 GCM Land 0.80 ± 0.03 0.74 ± 0.02 0.05 ± 0.04
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balanced (between − 0.3 and 0.3 °C). Data from Antarctica 
are missing.

Figure 8 presents a seasonal analysis of the records. It 
shows  TMin and  TMax global surface records for both the 
CRU-TS4 data (left) and the CMIP5 GCM ensemble mean 
simulations overland alone (right) divided into summer 
records (from May to October) and winter records (from 
November to April). The first raw refers to the entire world, 
whereas the second, third, and fourth raw refers to the 

latitude bands shown in Fig. 1a: 25° N–90° N, 25° S–25° N, 
and 90° S–25° S.

Table 2 reports the temperature variation ΔTMin and 
ΔTMax and their difference between the decades 2005–2014 
and 1945–1954 of the records depicted in Fig. 8.

The result confirms again that there is a signifi-
cant divergence between data and simulations which is 
stronger in the northern regions (25° N–90° N) and it is 
more stressed during the cold months from November to 

Fig. 5  World distribution of the divergence between  TMin and  TMax between a  1945–1954 and 2005–2014 and b  1951–1960 and 1991–2000 
using Eqs.1 and 2
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April. In general  TMax during the warm months from May 
to October not only warmed significantly less than  TMin but 
also warmed significantly less than the model predictions. 
For example, for the northern region 25° N–90° N,  TMax 
warmed 0.34 ± 0.06 °C less than  TMin, while the models’ 
prediction was 0.09 ± 0.08 °C. Moreover, during the warm 
months,  TMax warmed about 0.41 ± 0.07 °C less than the 

CMIP5 model prediction. Similar results were also found 
for China (Scafetta and Ouyang 2019).

These seasonal results are consistent with a UHI con-
tamination since such biases would be stressed during the 
cold months more than during the warm ones because, 
according to the atmospheric boundary layer physics, dur-
ing the warm season atmospheric convective instability 
and vertical flux are larger than during the cold months.

Fig. 6  Same as Fig. 5 using the CMIP5 GCM ensemble mean simulation a 1945–1954 and 2005–2014 and b 1951–1960 and 1991–2000 using 
Eqs. 1 and 2
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6  Visual evidence for UHI biases in macro‐
regions

Figure 9 enlarges four macro-regions depicted in Fig. 5a. 
The depicted areas include America, central and north 
Africa, Europe, and south–east Asia, and Australia. The 
maps also report the position of the cities with more than 
50,000 people (cyan dots) and, in the case of the bottom-
right panel regarding Australia, we added the cities with 

more than 10,000 people (black dots) (Free World City 
Database, worldcitiespop.txt 2012). The figure confirms 
that the most populated regions, which are characterized 
by a high concentration of urban centers, are often also the 
ones with the largest DTR negative trend.

Figure  9a shows reddish color areas in correspond-
ence with the highly populated central-east and west USA 
areas, south Alaska around its largest city Anchorage, north 
Columbia, and northern Venezuela.

Fig. 7  World distribution of the discrepancy between the CRU-TS4 temperature data (Fig. 5) and the CMIP5 ensemble mean simulation (Fig. 6) 
results using Eq. 3. a 1945–1954 and 2005–2014 and b 1951–1960 and 1991–2000 using Eq. 3
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Figure 9b shows a reddish area in the highly populated 
region from Italy up to the United Kingdom and of south-
east Europe from Greece to Russia compared to the less 
populated areas of Spain, Ireland, and north-east Europe 
which are mostly yellow. Africa and West Asia show red-
dish areas from western Turkey to Israel and Syria, in the 

eastern regions of the Arabia peninsula where, on the coast, 
large cities are present such as Manama, Dammam, Dubai. 
The same is noted in the vast highly populated region of 
Nigeria, and of Egypt and North Sudan along with the popu-
lated areas where the Nile river runs (cf. Fig. 1). Also, the 

Fig. 8  TMin and  TMax global surface records for both the CRU-TS4 
data (left) and the CMIP5 GCM ensemble mean simulations overland 
alone (right) divided into summer records (from May to October) and 

winter records (from November to April). First raw, world data; sec-
ond, third, and fourth raw, 25° N–90° N, 25° S–25° N and 90° S–25° 
S latitude regions

Table 2  Temperature variation ΔTMin and ΔTMax and their difference between the decades 2005–2014 and 1945–1954 of the records depicted in 
Fig. 8

CRU-TS4 CMIP5

ΔTMax ΔTMin ΔTMin − ΔTMax ΔTMax ΔTMin ΔTMin − ΔTMax

World May–Oct 0.68 ± 0.04 0.88 ± 0.04 0.2 ± 0.06 0.95 ± 0.06 1.03 ± 0.06 0.08 ± 0.08
Nov–Apr 0.91 ± 0.04 1.21 ± 0.04 0.3 ± 0.06 0.99 ± 0.06 1.14 ± 0.06 0.15 ± 0.08

25° N–90° N May–Oct 0.67 ± 0.04 1.01 ± 0.04 0.34 ± 0.06 1.06 ± 0.06 1.15 ± 0.06 0.09 ± 0.08
Nov–Apr 1.22 ± 0.04 1.59 ± 0.04 0.37 ± 0.06 1.2 ± 0.06 1.42 ± 0.06 0.22 ± 0.08

25° S–25° N May–Oct 0.67 ± 0.04 0.74 ± 0.04 0.07 ± 0.06 0.86 ± 0.06 0.94 ± 0.06 0.08 ± 0.08
Nov–Apr 0.54 ± 0.04 0.75 ± 0.04 0.21 ± 0.06 0.82 ± 0.06 0.91 ± 0.06 0.09 ± 0.08

90° S–25° S May–Oct 0.76 ± 0.04 0.66 ± 0.04 − 0.10 ± 0.06 0.85 ± 0.06 0.86 ± 0.06 0.01 ± 0.08
Nov–Apr 0.71 ± 0.04 0.95 ± 0.04 0.24 ± 0.06 0.68 ± 0.06 0.79 ± 0.06 0.11 ± 0.08
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blue desert regions in Algeria, east Ethiopia, and south-west 
Arabia seem influenced by the presence of some cities.

Figure 9c highlights the reddish color around the highly 
populated area of south-east Brazil, northern Argentina, and 
Chile. The bluish area of Bolivia appears to be due to the 
deforestation of the area.

Figure 9d shows a reddish color in the highly popu-
lated area of Vietnam, Cambodia, the Philippines, and 
Indonesia. New Zealand is violet while Australia, which 
is poorly populated and vastly desertic, still presents some 
reddish areas in the north–east coastal regions (Queens-
land) while the greenest area of the south–east (Victoria 
and Canberra) are less affected. A reddish color is found 
around some central Australia minor cities such as Alice 
Spring, which is located in a darker area relative to the 
surrounding desertic one.

In general, the salmon–yellow–green areas of Fig. 9 do 
not present large urban agglomerates.

Similar visual evidence of a diffused UHI effects cap-
tured by the DTR local trends and distribution regarding 
the most populated regions of China is reported and stud-
ied in detail in Scafetta and Ouyang (2019). In any case, 
again, the reddish areas are usually the most populated 
ones.

Fig. 9  Zooms of Fig. 5a. The cyan dots are cities with more than 50,000 people, the black dots in the bottom-right panel are cities with more 
than 10,000 people
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7  Comparisons between  TMean trends 
and their model simulations 
in macro‑regions.

If some regions of the Earth are particularly contaminated 
by UHI, it would affect both  TMax and  TMin trends and, 
therefore, their mean temperature records should present 
a warming trend larger than what happened. However, the 
models are optimized to reconstruct the warming shown in 
the actual global mean surface temperature record. Thus, 
if there is a warming bias in the temperature record, the 
CMIP5 ensemble mean temperature simulations should 
overestimate the warming where such biases are absent 
or minimally present, and underestimate it where the UHI 
biases are expected to be larger. To check whether such 
an expectation is correct, we run a few tests by comparing 
mean temperature records and their CMIP5 simulations 
in specific macro-regions that can be discriminated by 
urbanization levels.

7.1   Greenland

Figures 5 and 7 suggest that Greenland should be one of 
the few macro-regions of the world that is mostly free of 
any non-climatic bias. In fact, in Fig. 7 the area color var-
ies from lite yellow (– 0.2 °C) to lite coral (0.2 °C). Indeed, 
Greenland has a surface of about 2,200,000 km2 (approxi-
mately as West Europe) and a total population of just a small 
European city, that is only 56,000 people (by 2018) that did 

not grow significantly since 1980 (source: https ://en.wikip 
edia.org/wiki/Green land). Moreover, only one town has a 
population larger than 10,000 people (Nuuk, 18,000) and 
the other four largest towns have a population between 3000 
and 6000. Only Southern Greenland, where its largest towns 
are located, appears modestly affected by a non-climatic bias 
(slight coral color in the figures). Indeed, UHI effects have 
been observed also for small arctic towns of comparable 
size such as Barrow (AK, USA, actual population of about 
4500) (Hinkel et al. 2003). Thus, non-climatic anthropogenic 
biases (such as UHI, sulfate aerosol, and others) should be 
nearly negligible in Greenland.

The climate record of Greenland was carefully recon-
structed since 1840 (Box et al. 2009). This record shows 
that the Greenland mean temperature in the 1940s was just 
moderately colder than the post-2000 warming period. The 
same is true for the entire polar arctic region from 70°–90° 
N.

Figure 10a compares the CRU-TS4 mean temperature 
record over Greenland and its corresponding GMIP5 GCM 
ensemble mean reconstruction. Both records are available 
at Climate Change Atlas at KNMI Climate Explorer (https 
://clime xp.knmi.nl/plot_atlas _form.py). It is observed that 
from 1930 to 1950 to 2005–2017, Greenland warmed by 
about 0.7 ± 0.2 °C. On the contrary, the CMIP5 ensem-
ble mean temperature record predicts a warming of about 
1.5 ± 0.1 °C between the same two periods.

Thus, the models (which are calibrated to reproduce, on 
average, the observed global warming trend since 1900) 

Fig. 10  a  CRU-TS4 observed and CMIP5 GCM simulated ensem-
ble mean temperature anomaly over Greenland relative to the 1930–
1950 mean value. b  Locations of towns in Greenland with popula-

tion > 10,000 (red), > 3000 (orange), > 1000 (green), and > 300 (blue) 
(https ://en.wikip edia.org/wiki/List_of_citie s_and_towns _in_Green 
land)

https://en.wikipedia.org/wiki/Greenland
https://en.wikipedia.org/wiki/Greenland
https://climexp.knmi.nl/plot_atlas_form.py
https://climexp.knmi.nl/plot_atlas_form.py
https://en.wikipedia.org/wiki/List_of_cities_and_towns_in_Greenland
https://en.wikipedia.org/wiki/List_of_cities_and_towns_in_Greenland
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hindcast almost twice the warming than what has been 
recorded in Greenland since 1930–1950.

7.2  Three continental macro‐regions

The color patterns of Figs. 5 and 7 suggest that most of 
the world can be approximately divided into three macro-
regions with different mean DTR biases. We analyze the 
following ones.

• 60 S–30 N:120 W–90 E: it comprehends Central and 
South America and Africa and appears to be on average 
less affected by DTR biases and is also modestly popu-
lated.

• 60 S–10 N:90 E–180 E: it comprehends South-East Asia 
and Oceania and appears to be more affected than the 
previous one, but less affected than the following one.

• 30 N–80 N:180 W–180 E: it comprehends most of North 
America, Europe, and Central and North Asia. This 
macro-region is the most urbanized and populated one 
and also appears to be the most DTR biased one.

For each of these macro-regions, Fig. 11 compares the 
CRU-TS4 mean records and the CMIP5 mean surface tem-
perature hindcasts on land alone.

The upper panels a–c show the actual mean tempera-
ture records, while the bottom panels d– f show the dis-
crepancy between the synthetic records and the reported 
temperature records. These residual functions are fit with 
parabolic curves to better highlight systematic biases.

This comparison confirms that from 1900 to 2020 in the 
first two and less DTR-affected macro-regions (60 S–30 
N:120 W–90 E and 60 S–10 N:90 E–180 E), the computer 
simulations significantly overestimate the observed warm-
ing by about 0.3 °C and 0.2 °C, respectively, or about 
20–30% of the observed warming of about 1 °C. On the 
contrary, for the third and most DTR-affected macro-
region (30 N–80 N:180 W–180 E) the models underesti-
mate the reported warming by about 0.08 °C, or about 5% 
of the observed warming of about 1.6 °C.

Fig. 11  a–c  Comparison between the CRU-TS4 records and the 
CMIP5 mean prediction in the macro-regions 60 S–30 N:120 W–90 
E, 60 S–10 N:90 E–180 E, and 30 N–80 N:180 W–180 E. The tem-

perature anomalies are relative to the 1900–1950 period. d–f Residual 
functions between predictions and data are fit with parabolic curves
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7.3  Instrumental and tree‐based land temperature 
reconstructions

A very large number of temperature proxy reconstructions 
have been proposed in the literature. Regarding the proxy 
temperature records for the late 20th century a so-called 
“divergence problem” has emerged (Taubes 1995; Jacoby 
and D’Arrigo 1995; Briffa et al. 1998; Esper et al. 2012, 
2018). This is the observed disagreement between the 
reported land instrumental temperatures warming of the 
last decades and the one reconstructed from the latewood 
densities and tree-rings widths: the latter show much less 
warming.

For example, Esper et al. (2018) proposed six tree-ring 
temperature reconstructions for the 30° N–70° N land area 
which approximately agrees with the third macro-region 
analyzed above that is suspected to be seriously affected by 
non-climatic warming biases. Four of the proposed tree-
based reconstructions last until 2002 and were compared 
against the summer (JJA) instrumental temperatures aver-
aged over 30° N–70° N land area since 1880. The summer 
temperature data were used because the trees are supposed 
to grow mostly during such a season.

Figure 12 shows the average of Esper’s four proxy tem-
perature records against the corresponding JJA instrumen-
tal temperature record over the 30° N–70° N land areas 
(relative to the 1930–1960 mean period). The two records 
agree sufficiently well from 1880 to the 1970s, but sig-
nificantly diverge afterward. Relative to the 1930–1960 
period, the instrumental records show that the 1990–2002 
period warmed by 0.4 ± 0.1 °C. However, during the same 
period, the tree-based temperature reconstruction warms 
by just 0.05 ± 0.05 °C.

The explanation for the observed strong divergence 
(0.35 °C from 1980 to 2002, on a recorded warming of 
0.4 °C) is still unclear. However, a possibility is that the 
instrumental temperature records are affected by non-cli-
matic warming biases, such as those due to urbanization, 
which cannot influence trees that grow in uninhabited large 
forests which are unambiguously genuine rural regions.

In general, to properly reproduce the temperature trends 
in Greenland, as well as in other macro-regions or even 
globally, the models might need to simulate correctly the 
climatic oscillations including the North Atlantic Oscilla-
tion and the amount of sea-ice around Greenland, which 
they appear to fail for several reasons (cf.: Scafetta 2013; 
Connolly et al. 2017; Scafetta et al. 2020).

8  A tentative estimate of the non‑climatic 
land and global warming bias

The above results suggest that the land climatic record is 
affected by significant non-climatic warming biases. In 
this section, we propose a methodology to estimate the 
global non-climatic warming bias affecting both the land 
and the global surface temperature records. It uses a com-
parison between ocean and land global mean temperature 
data against their CMIP5 predictions: see Fig. 13. In this 
test, we use the HadCRUT4.6 land and ocean surface tem-
perature database.

The rationale is that sea surface temperatures (SST) are 
expected to be free of urbanization and other non-climatic 
biases that may be affecting the land climatic records. 
These records may be affected by other forms of biases, 
particularly for the early 20th century (e.g.: Kennedy et al. 
2011; Kennedy 2014; D’Aleo 2016). Davis et al. (2019) 
even found that the implied 1950–1975 global SST trends 
were of opposite sign depending on which type of SST 
data they used. However, in the following, we assume that 
the global SST record is sufficiently accurate at least since 
1940–1960 and use it as a reference.

The proposed methodology takes into account that SST is 
expected to warm less than the land because of its larger heat 
capacity: as the global land temperature and SST records 
depicted in Fig. 13a show. The same qualitative behavior 
is reproduced by the CMIP5 GCM ensemble mean predic-
tions because these models take into account the different 
thermodynamical properties of the two regions (Fig. 13b).

However, when the land and SST records are compared 
directly against their CMIP5 GCM ensemble simulations, 
the simulation almost exactly reproduces the land record 
(Fig. 13c), but significantly overestimates the SST warm-
ing (Fig. 13d).

Using the 1940–1960 period as the anomaly refer-
ence, in the 2000–2020 period the land temperature was 

Fig. 12  Tree-based mean temperature reconstructions (red) against 
the JJA instrumental temperatures averaged over 30–70 °N land 
areas (blue). The curves are scaled over the 1930–1960 period (Esper 
et al. 2018)
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0.97 ± 0.05 °C against the modeled 1.03 ± 0.04 °C. How-
ever, in 2000–2020, the SST temperature was 0.41 ± 0.03 °C 
against the CMIP5 ensemble mean simulation show a warm-
ing of 0.69 ± 0.03 °C. Thus, there is a significant observation 
versus simulation divergence regarding the ocean region, 
which covers 70% of the entire world surface.

By assuming the SST warming trend accurate since 
1940–1960 the above result once again confirms that 
the land temperature record significantly exaggerates the 
warming. In fact, the models likely overestimate the SST 
warming trend simply because they were calibrated to 
reproduce the global mean temperature warming of the 
20th century, as also discussed and found in Sect. 7.

By assuming the SST warming trend reliable, the above 
results can be used to calibrate the land temperature record 
using adjusted model estimates. This operation assumes 
that (1) the synthetic records could correctly evaluate the 
different climatic warming expected by the land versus 
the sea surface and (2) they can be adjusted by modify-
ing their sensitivity to radiative forcings within a large 
but certain range. The first assumption could be justified 
by the claim that these models simulate, at least theoreti-
cally, all known physical aspects of the phenomenon; the 
second assumption is supported by the finding that the 
equilibrium climate sensitivity (ECS) to radiative forcing 
is still extremely uncertain because ranging from about 
1 to 6 °C for a  CO2 doubling (Knutti et al. 2017). Since the 
mean CMIP5 ECS is about 3 °C (IPCC 2013), the CMIP5 

ensemble mean simulation could theoretically be scaled 
down by even a factor of 3 and still be consistent with the 
ECS values determined in the scientific literature. The pro-
posed adjustment can be made, in the first approximation, 
by applying appropriate scaling factors to the temperature 
reconstructions as explained below.

First, we scale the CMIP5 synthetic ocean record by a fac-
tor equal to 0.41/0.69 to make its warming from the twenty-
year period 1940–1960 to 2000–2020 compatible with the 
SST record (which has been assumed to be accurate). The 
same scaling must then be applied to the synthetic land 
record because the CMIP5 models process the sea surface 
temperature together with the land one. With this scaling, in 
2000–2020 the modeled land mean warming decreases from 
1.03 ± 0.04 °C to 1.03*0.41/0.69 = 0.61 ± 0.06 °C.

At this point, a second scaling equal to 0.61/0.97 = 0.63 
is applied to the instrumental land record to make its 
2000–2020 warming relative to the 1940–1960 period com-
patible with that hindcast by the scaled model expectation. 
This second scaling reduces the modeled land warming 
from 1940 to 1960 to 2000–2020 from 0.97 ± 0.05 °C to 
0.61 ± 0.07 °C.

Thus, under the above assumptions, the 0.97 ± 0.05 °C 
instrumental land warming observed from 1940 to 1960 to 
2000–2020 is likely made of a 0.61 ± 0.07 °C possibly aut-
entic climatic warming plus a 0.36 ± 0.04 °C non-climatic 
warming bias. This means that 25–45%, that is about a third 
of the recorded global surface land warming from 1940 to 

Fig. 13  Comparison between Land and SST records using the HadCRUT4 records and the CMIP5 ensemble mean values. The temperature 
anomalies are relative to the 1940–1960 period
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1960 to 2000–2020 could have been due to urbanization and 
other unidentified non-climatic biases.

The above results can be used to evaluate a corrected 
global surface temperature record using a combination of the 
original SST record and the land record once corrected of 
the estimated non-climatic bias using the above-calculated 
scaling. These two records are combined by weighting the 
land one by 30% and the SST one by 70%, that is:  Tcorr = 
0.3  Tland,corr + 0.7 SST. In fact, using linear regression, we 
determined that with such weights the original land and SST 
records reconstruct the HadCRUT mean surface temperature 
record.

Figure  14a shows the original HadCRUT4.6 record 
(black), the proposed corrected one (red) versus with the 
CMIP5 mean ensemble temperature hindcast (yellow) 
together with 106 independent model runs. Figure 14b 
shows the same versus the UAH MSU v6.0 low troposphere 
satellite global temperature record (Spencer et al. 2017) 
using the same 1979–1985 baseline. The data are anomalies 
relative to the 1940–1960 period. Relative to the 1940–1960 
period, the 2000–2020 period was 0.59 ± 0.03 °C using the 
original HadCRUT record, 0.44 ± 0.03 °C using the UAH 

MSU record, 0.48 ± 0.03 °C using the proposed corrected 
global surface temperature record, and 0.78 ± 0.03 °C using 
the CMIP5 GCMs ensemble mean record.

Thus, according to the above assumptions, the non-cli-
matic biases may have contributed between 15 and 25%, 
that is about a fifth of the global warning from 1940 to 1960 
to 2000–2020 recorded in the official global mean surface 
temperature record, which is not a negligible error. It is also 
relevant that the corrected global temperature record is sta-
tistically compatible with the satellite UAH MSU v6.0 low 
troposphere global temperature record.

Moreover, from 1940 to 1960 to 2000–2020, the CMIP5 
GCMs may have on average overestimated the climatic 
warming by about 40%. Even assuming the 106 CMIP5 sin-
gle model runs, Fig. 14 shows that they appear to produce 
almost always warmer trends than the proposed corrected 
global surface record.

9  Discussion and conclusion

The warming observed globally from the twenty-year period 
1940–1960 to 2000–2020 (about 0.6 °C) may be partially 
due to UHI and other non-climatic mechanisms even though 
several previous studies have argued to the contrary. Herein 
we have addressed this issue by comparing land and SST 
climatic local and global records and their CMIP5 model 
predictions. We have looked at warming trends over periods 
of about 60 years. This time scale coincides with one of the 
largest well-known climatic oscillations observed in climatic 
records for centuries and was chosen to overcome possible 
statistical and trend artifacts that could affect the analysis by 
not considering it (Scafetta 2014; Scafetta et al. 2020; Wyatt 
and Curry 2014).

The DTR trends were studied because UHI area enlarges 
during nighttime and nocturnal near-surface winds diffuse 
more urban heat upon suburban and rural areas, warming 
them. Thus, in presence of urbanization development, DTR 
is expected to decrease.

In general, land use and management changes such as 
irrigation, deforestation, overgrazing of grasslands, etc., 
like urbanization, also produce non-global warming trends 
(e.g.: Liu et al. 2019; Pielke et al. 2016). In this regard, 
Zipper et al. (2019) showed that land surface effects can be 
regionally teleconnected to locations without a landscape 
change. In specific environments, e.g. in some arid regions, 
urbanization, which develops in the proximity of oases, 
could induce an opposite effect because their urban areas 
should form cold islands. The same could happen when a 
region is transformed by intense deforestation, as happened 
in Bolivia, which causes a local albedo change.

Also anthropogenic aerosols (such as sulfate emitted 
mostly by the combustion of fossil fuel) cools daytime 

Fig. 14  The original HadCRUT4.6 global surface temperature record 
(black), the proposed one corrected of the land non-climatic warming 
biases (red). Together with: a  the CMIP5 mean ensemble tempera-
ture prediction (yellow) with 106 single different model simulations 
(green); b  the UAH MSU v6.0 low troposphere global temperature 
record (blue) using the same 1979–1985 baseline. The data are anom-
alies relative to the 1940–1960 period
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temperature (Cai et al. 2016). However, according to Zdun-
kowski et al. (1976), aerosols should cool both  TMax and 
 TMin. Yet, what was found here is that often  TMax warmed 
less than what the models hindcast while  TMin warmed more 
than the synthetic records. Moreover, GCMs include aerosol, 
land-use changes, and other forcings. Thus, if these alterna-
tive factors were responsible for the observed DTR changes 
on global and local scales, the models would be supposed to 
reproduce the observations, which, according to the above 
figures, they cannot do. Thus, although a localized aerosol 
bias may have contributed to the observed patterns, it cannot 
explain them fully, as already noted for China (Scafetta and 
Ouyang, 2019; Jiang et al., 2020).

Figures 3 and 4 showed that DTR decreased from 1950 to 
2000 (when the urbanization greatly increased in the world 
significantly) more than what the CMIP5 GCMs hindcast. 
Yet, in the inter-tropical regions, this bias is less relevant. 
This result reveals possible UHI contaminations as well as 
aerosol effects, land use, and/or other non-climatic biases.

Figures 4, 5, 6, 7, 8 and 9 confirm that in vast regions of 
the world, from the decade 1945–1954 to 2005–2014, DTR 
values decreased more than the model predictions. Although 
part of the observed data-model discrepancy could be due 
to an inability of the GCMs to properly reconstruct climatic 
patterns in specific environments, UHI, and aerosol effects 
could still explain a significant portion of the results because 
many urbanized areas coincide with areas characterized 
by significant DTR decrease not modeled by the CMIP5 
models. The same result was found for China (Scafetta and 
Ouyang 2019; Jiang et al. 2020). In general, the complexity 
of these phenomena makes it difficult to correctly interpret 
what happens in each region. In any case, the results dem-
onstrate that either the data are still significantly affected 
by local non-climatic biases such as urbanization, or that 
the CMIP5 models poorly interpret the data patterns at both 
local and global scales, and must be greatly improved, or 
both.

It may be possible to wonder whether such a result 
emerged just because the data were compared directly 
against the surface temperature ensemble mean model. Yet, 
the models should be expected to reproduce the DTR trends 
on 60-year periods at both the local and global time scales. 
Thus, if the data were free from local non-climatic biases, 
a failure to reproduce the observed patterns in a consistent 
way among the various models, would still argue against the 
latter. In any case, the results suggest that the climatic global 
land surface temperature is likely contaminated by regional 
non-climatic biases that the models are not able, or not sup-
posed to simulate for several reasons.

In any case, many regions showing large DTR biases 
(reddish color in Figs. 5 and 7) are also densely populated 
and have experienced significant urbanization (cf.: Fig. 1 
and 9). These regions include east China, south-east Asia, 

east and western USA, north Colombia and Venezuela. Even 
localized regions such as the area around Rio de Janeiro 
and San Paolo in south–east Brazil are affected by UHI. 
The urbanization of these areas has on average increased 
10 times from 1950 to 2015: see Fig. 1b (https ://popul ation 
.un.org/wup/). A moderate warming bias is found also in 
Europe (United Kingdom, France, Italy, Greece, and Slavic 
countries up to Ukraine and south Russia), and central and 
north-east Australia. North Siberia (60°–80° N, 75°–120° E) 
is also characterized by a strong hot spot but this region is 
sparsely inhabited. This bias may be due to a lack of weather 
stations in the region and to the development of a very local-
ized UHI effect (cf. Konstantinov et al. 2015), or alterna-
tively it may be due to the melting of an increasing mass 
of permafrost, which could cool daytime temperatures by 
melting and absorbing latent heat from the environment and 
warm nighttime temperatures by freezing again and releas-
ing latent heat (cf. Biskaborn et al. 2019), which could have 
an effect on local instrumental temperature records similar 
to increasing UHI.

The seasonal analysis shown in Fig. 8 reinforces the inter-
pretation that the land temperature climatic record contains 
a significant non-climatic UHI contamination component. 
In fact, the warming observed during the summer months 
in the highly populated north hemisphere is significantly 
lower than the model hindcasts. This result may not be fully 
explained by the addition of atmospheric aerosols such as 
sulfate since air pollution is lower during the warm season 
(Lin et al. 2008). On the contrary, it may be explained by 
the atmospheric boundary layer physics nearby UHIs and 
by the seasonal changes in wind strength, which in summer 
are usually stronger.

To further investigate the issue, we analyzed the diver-
gence between global and local mean temperature records 
relative to the model simulations. In fact, the models are 
calibrated to reproduce the global warming observed dur-
ing the 20th century. Thus, if some regions present a non-
climatic warming bias, the models are on average expected 
to underestimate the warming where such a bias is more 
prominent and overestimate the warming where the non-
climatic warming biases are less relevant.

The above expectation was confirmed in several ways. 
We found that the CMIP5 ensemble model simulation sig-
nificantly overestimates the warming observed in Greenland 
and in other macro-regions expected to be little affected by 
urbanization while underestimating the warming observed in 
more urbanized macro-region such as in the 30 N–80 N:180 
W–180 E macro-region, which includes the most urbanized 
areas of North America, Europe, and Central and North 
Asia. That this macro-region is problematic is also indi-
rectly confirmed by the late 20th century tree-based proxy 
temperature reconstructions covering the 30° N–70° N land 
area, which produce significantly less warming than what 

https://population.un.org/wup/
https://population.un.org/wup/
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was shown by the instrumental temperature record covering 
the same region at least since 1980.

Finally, we compared global land and sea surface tem-
perature records and found that, while the models slightly 
underestimate the land warming observed from 1940 to 
1960 to 2000–2020, they significantly overestimate the SST 
warming during the same period. In the light of the above 
findings, and under the assumption that the SST warming 
since 1940–1960 is accurate, the models can be scaled on the 
SST record and used to estimate an expected land warming. 
Corrected in such a way, we determined that 25–45% of the 
recorded 0.97 ± 0.05 °C land warming from 1940 to 1960 
to 2000–2020 is likely due to urbanization and other uni-
dentified non-climatic factors biasing the available climatic 
records (cf. McKitrick and Michaels 2007).

Finally, we produced a corrected global surface temperature 
record using a combination of the original SST record and the 
corrected land temperature record. We found that about 20% 
of the reported global surface warming from 1940 to 1960 to 
2000–2020 could be due to non-climatic biases such as urbani-
zation. Our result appears also experimentally confirmed by 
the fact that the warming observed since 1979 in our corrected 
global surface temperature record is statistically compatible 
with that shown by the satellite UAH MSU v6.0 low tropo-
sphere global temperature record, which should not be signifi-
cantly affected by UHI and other surface non-climatic biases.

Thus, the present findings stress the importance of better 
investigating possible urbanization and other non-climatic 
biases throughout the world that could have exaggerated the 
warming so that the climatic records could be properly cor-
rected. Alternatively, the UAH MSU temperature record could 
be used to better characterize global warming and climate 
changes since 1979.

The result is important also to evaluate and improve the cli-
mate models. In fact, Fig. 14 suggests that, on average, from the 
twenty-year period 1940–1960 to 2000–2020 the CMIP5 GCMs 
have overestimated the anthropogenic warming trend by on aver-
age about 40%.

The result has obvious consequences also for the models’ 
warming expectations for the 21st century because, to make 
these models consistent with our proposed adjusted tempera-
ture record, their projecterd warming should be reduced by 
about 40% for all emission scenarios.

The latter finding also supports the conclusion of several 
studies suggesting that these models significantly overesti-
mated the ECS by about a factor of two (cf.: Scafetta 2013; 
Gervais 2016; Lewis and Curry 2018; Bates 2016; Lindzen and 
Choi 2011; and others). The models predict ECS values spaning 
within the range from 2.1 °C to 4.7 °C, which is usually larger 
than what is determined by several recent empirical studies 
(Knutti et al. 2017). Moreover, the situation may be worsening 
because the recent CMIP6 models even predict on average larger 
ECS values (spanning 1.8–5.6 °C) than the CMIP5 models 

(Zelinka et al. 2020). Finally, Scafetta (2013) argued that ECS 
should be low because the temperature reconstructions of the 
last several millennia also show a large quasi-millennial cycle 
responsible, for example, of very warm Roman and Medieval 
climatic anomalies (cf.: Alley 2004; Ljungqvist 2010; Esper 
et al. 2012; Kutschera et al. 2017; Hao et al. 2020; Margari-
telli et al. 2020). This large millennial oscillation is expected 
to peak in the second half of the 21st century (Scafetta 2013) 
and appears to be induced by some kind of solar-astronomical 
forcings (Scafetta 2020; Scafetta et al. 2020). A large natural 
millennial oscillation is not reproduced by the models, but it 
should have contributed to the warming observed in the 20th 
century despite the CMIP5 models attribute the post industri-
alization global warming intirely to anthropogenic forcings (cf.: 
IPCC 2013; Scafetta 2019).

Appendix

Colour-blind readers could have some difficulty in cor-
rectly interpret Figs. 5, 6, 7 and 9 because the multicolor 
images also include red and green colors. Using specific 
software, I simulate how these figures would appear to 
various types of color-blindeness and it seems to me that 
the different marked regions could be still recognizable 
although they would appear in different colors. However, 
specific software tools are freely available to transform 
image colors into those discriminable for various people 
with color vision deficiency: e.g. Visolve, http://www.
ryobi -sol.co.jp/visol ve/en/.

Acnowledgements The author would like to thank the three referees 
for their useful comments.

Funding Open Access funding provided by Università degli Studi di 
Napoli Federico II. 

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

Alley RB (2004) GISP2 Ice Core Temperature and Accumulation 
Data. IGBP PAGES/World Data Center for Paleoclimatology 
Data Contribution Series #2004-013. NOAA/NGDC Paleocli-
matology Program, Boulder CO, USA

http://www.ryobi-sol.co.jp/visolve/en/
http://www.ryobi-sol.co.jp/visolve/en/
http://creativecommons.org/licenses/by/4.0/


 N. Scafetta 

1 3

Balling RC Jr, Idso SB (1989) Historical temperature trends in the 
United States and the effect of urban population growth. J Geo-
phys Res 94:3359–3363

Bates JR (2016) Estimating climate sensitivity using two-zone 
energy balance models. Earth Sp Sci 3:207–225

Bindoff NL, Stott PA, AchutaRao KM et al (2013) Detection and 
attribution of climate change: from global to regional. In: 
Stocker TF (ed) Climate Change 2013: The Physical Science 
Basis. Cambridge University Press, Cambridge

Box JE, Yang L, Browmich DH, Bai L-S (2009) Greenland ice sheet 
surface air temperature variability: 1840–2007. J Climate 
22(14):4029–4049

Braganza K, Karoly DJ, Arblaster JM (2004) Diurnal temperature 
range as an index of global climate change during the twentieth 
century. Geophys Res Lett 31:L13217

Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, 
Vaganov EA (1998) Reduced sensitivity of recent tree-growth 
to temperature at high northern latitudes. Nature 391:678–682

Cai J, Guan Z, Ma F (2016) Possible combined influences of absorbing 
aerosols and anomalous atmospheric circulation on summertime 
diurnal temperature range variation over the middle and lower 
reaches of the Yangtze River. J Meteorol Res 30(6):927–943

Cao L, Zhao P, Yan Z, Jones P, Zhu Y, Yu Y, Tang G (2013) Instru-
mental temperature series in eastern and central China back to 
the nineteenth century. J Geophys Res Atmos 118:8197–8207

Compo GP, Sardesmukh PD, Whitaker JS, Brohan P, Jones PD, 
McColl C (2013) Independent confirmation of global land 
warming without the use of station thermometers. Geophys 
Res Lett 40:3170–3174

Connolly R, Connolly M, Soon W (2017) Re-calibration of Arctic 
sea ice extent datasets using Arctic surface air temperature 
records. Hydrol Sci J 62:1317–1340

Connolly R, Connolly M, Soon W, Legates DR, Cionco RG, Velasco 
Herrera VM (2019) Northern hemisphere snow-cover trends 
(1967–2018): a comparison between climate models and obser-
vations. Geosciences 9:135

Dai A, Trenberth KE, Karl TR (1999) Effects of clouds, soil mois-
ture, precipitation, and water vapor on diurnal temperature 
range. J Clim 12:2451–2473

D’Aleo JS (2016) Chapter 2 - A Critical Look at Surface Temperature 
Records. In Easterbrook D.J. (Ed.), Evidence-Based Climate 
Science (Second Edition), Elsevier, 11–48

Davis LLB, Thompson DWJ, Kennedy JJ, Kent EC (2019) The impor-
tance of unresolved biases in twentieth-century sea surface tem-
perature observations. Bull Am Meteorol Soc 100:621–629

de Gaetano AT (2006) Attributes of several methods for detecting 
discontinuities in mean temperature series. J Clim 19:838–853

Dienst M, Lindén J, Esper J (2018) Determination of the urban heat 
island intensity in villages and its connection to land cover in 
three European climate zones. Clim Res 76:1–15

Dimoudi A, Nikolopoulou M (2003) Vegetation in the urban envi-
ronment: microclimatic analysis and benefits. Energy Build 
35:69–76

Ding YH, Liu YJ, Liang SJ, Ma X, Zhang Y, Si D, Liang P, Song Y, 
Zhang J (2014) Interdecadal variability of the East Asian Win-
ter Monsoon and its possible links to global climate change. J 
Meteorol Res 28:693–713

Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker 
DE, Salinger MJ, Razuvayev V, Plummer N, Jamason P, Folland 
CK (1997) A new look at maximum and minimum temperature 
trends for the globe. Science 277:364–367

Emmanuel R, Krüger E (2012) Urban heat island and its impact on cli-
mate change resilience in a shrinking city: the case of Glasgow, 
UK. Build Environ 53:137–149

Esper J, Frank DC, Timonen M, Zorita E, Wilson RJS, Luterbacher 
J, Holzkämper S, Fischer N, Wagner S, Nievergelt D, Verstege 

A, Büntgen U (2012) Orbital forcing of tree-ring data. Nat Clim 
Change 2:862–866

Esper J, Holzkämper S, Büntgen U, Schöne B, Keppler F, Hartl C, St. 
George S, Riechelmann DFC, Treydte K (2018) Site-specific cli-
matic signals in stable isotope records from Swedish pine forests. 
Trees 32:855–869

Fall S, Watts A, Nielsen-Gammon J, Jones E, Niyogi D, Christy, JR, 
Pielke Sr, R. A (2011) Analysis of the impacts of station expo-
sure on the U.S. Historical Climatology Network temperatures 
and temperature trends. J Geophys Res 116:D14120

Freitas L, Pereira MG, Caramelo L, Mendes M, Nunes LF (2013) 
Homogeneity of monthly air temperature in Portugal with 
HOMER and MASH. Idojaras 117(1):69–90

Gaffin SR, Rosenzweig C, Khanbilvardi R, Parshall L, Mahani S, 
Glickman H, Goldberg R, Blake R, Slosberg RB, Hillel D (2008) 
Variations in New York city’s urban heat island strength over 
time and space. Theor Appl Climatol 94:1–11

Gallo KP, Easterling DR, Peterson TC (1996) The influence of land 
use/land cover on climatological values of the diurnal tempera-
ture range. J Clim 9:2941–2944

Gervais F (2016) Anthropogenic CO2 warming challenged by 60-year 
cycle. Earth Sci Rev 155:129–135

Hansen JE, Ruedy R, Sato M, Lo K (2010) Global surface temperature 
change. Rev Geophys 48:RG4004

Hao Z, Wu M, Liu Y, Zhang X, Zheng J (2020) Multi-scale tempera-
ture variations and their regional differences in China during the 
Medieval Climate Anomaly. J Geogr Sci 30:119–130

Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-reso-
lution grids of monthly climatic observations – the CRU TS3.10 
Dataset. Int J Climatol 34:623–642

Harris I, Osborn TJ, Jones PD, Lister DH (2020) Version 4 of the CRU 
TS monthly high-resolution gridded multivariate climate dataset. 
Sci Data 7:109

Hausfather Z, Menne MJ, Williams CN, Masters T, Broberg R, Jones 
D (2013) Quantifying the effect of urbanization on U.S. Histori-
cal Climatology Network temperature records. J Geophys Res 
Atmos 118:481–494

Hinkel KM, Nelson FE, Klene AE, Bell JH (2003) The urban heat 
island in winter at Barrow, Alaska. Int J Climatol 23:1889–1905

Holderness T, Barr S, Dawson R, Hall J (2013) An evaluation of ther-
mal Earth observation for characterizing urban heatwave event 
dynamics using the urban heat island intensity metric. Int J 
Remote Sens 34(3):864–884

Hubbard KG, Lin X (2006) Reexamination of instrument change effects 
in the U.S. Historical Climatology Network. Geophys Res Lett 
33:L15710

Intergovernmental Panel on Climate Change (IPCC) (2013) - Climate 
Change 2013: the Physical Science Basis. (Stocke r T.F. et al. 
Eds.). Cambridge Univ. Press. http://www.ipcc.ch/

Jacoby GC, D’Arrigo RD (1995) Tree ring width and density evidence 
of climatic and potential forest change in Alaska. Global Biogeo-
chem Cycles 9(2):227–234

Jiang S, Wang K, Mao Y (2020) Rapid Local Urbanization around 
Most Meteorological Stations Explains the Observed Daily 
Asymmetric Warming Rates across China from 1985 to 2017. J 
Clim 33:9045–9061

Jones PD, Lister DH (2009) The Urban Heat Island in Central London 
and urban-related warming trends in Central London since 1900. 
Weather 64:323–327

Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP 
(2012) Hemispheric and large-scale land surface air temperature 
variations: an extensive revision and an update to 2010. J Geo-
phys Res 117:D05127

Karl TR, Williams CN, Young PJ, Wendland WM (1986) A model to 
estimate the time of observation bias associated with monthly 

http://www.ipcc.ch/


Detection of non‐climatic biases in land surface temperature records by comparing climatic…

1 3

mean maximum, minimum and mean temperatures for the United 
States. J Clim Appl Meteorol 25:145–160

Karl TR, Jones PD, Knight RW, Kukla G, Plummer N, Razuvayev V, 
Gallo KP, Lindesay J, Charlson RJ, Peterson TD (1993) Asym-
metric trends of daily maximum and minimum temperature: 
empirical evidence and possible causes. Bull Am Meteorol Soc 
74:1007–1023

Kato H (1996) A statistical method for seperating urban effect trends 
from observed temperature data and its application to Japanese 
temperature records. J Meteorol Soc Jpn 74:639–653

Kennedy JJ (2014) A review of uncertainty in in situ measurements 
and data sets of sea surface temperature. Rev Geophys 52:1–32

Kennedy JJ, Rayner NA, Smith RO, Parker DE, Saunby M (2011) 
Reassessing biases and other uncertainties in sea surface tem-
perature observations measured in situ since 1850: 2. Biases and 
homogenization. J Geophys Res 116:D14104

Kershaw T (2017) The urban heat island (UHI), Chap. 4 in Kershaw T., 
Climate Change Resilience in the Urban Environment, London

Killeen TJ, Guerra A, Calzada M, Correa L, Calderon V, Soria L, 
Quezada B, Steininger MK (2008) Total historical land-use 
change in eastern Bolivia: who, where, when, and how much? 
Ecol Soc 13:36

Kim YH, Baik JJ (2004) Daily maximum urban heat island intensity in 
large cities of Korea. Theor Appl Climatol 79:151–164

Knutti R, Rugenstein M, Hegerl G (2017) Beyond equilibrium climate 
sensitivity. Nat Geosci 10:727–736

Kolokotroni M, Giridharan R (2008) Urban heat island intensity in 
London: an investigation of the impact of physical characteris-
tics on changes in outdoor air temperature during summer. Sol 
Energy 82(11):986–998

Kolokotroni M, Giannitsaris I, Watkins R (2006) The effect of the 
London heat island and building summer cooling demand and 
night ventilation strategies. Sol Energy 80(4):383–392

Kutschera W, Patzelt G, Steier P, Wild EM (2017) The tyrolean iceman 
and his glacial environment during the holocene. Radiocarbon 
59(2):395–405

Landsberg HE (1981) The Urban Climate. Academic Press
Lewis N, Curry J (2018) The Impact of Recent Forcing and Ocean 

Heat Uptake Data on Estimates of Climate Sensitivity. J Clim 
31:6051–6071

Li Q, Zhang L, Xu W et al (2017) Comparisons of time series of 
annual mean surface air temperature for China since the 1900s: 
observations, model simulations and extended reanalysis. Bull 
Am Meteorol Soc 98:699–711

Li D, Liao W, Rigden AJ, Liu X, Wang D, Malyshev S, Shevliakova 
E (2019) Urban heat island: aerodynamics or imperviousness? 
Sci Adv 5:eaau429

Lim Y-K, Cai M, Kalnay E, Zhou L (2005) Observational evidence 
of sensitivity of surface climate changes to land types and 
urbanization. Geophys Res Lett 32:L22712

Lin C-H, Wu Y-L, Lai C-H, Watson JG, Chow JC (2008) Air Quality 
Measurements from the Southern Particulate Matter Supersite 
in Taiwan. Aerosol Air Qual Res 8(3):233–264

Lindzen RS, Choi Y-S (2011) On the observational determination 
of climate sensitivity and its implications. Asia-Pac J Atmos 
Sci 47:377–390

Liu T, Yu L, Zhang S (2019) Land Surface Temperature Response 
to Irrigated Paddy Field Expansion: a Case Study of Semiarid 
Western Jilin Province, China. Sci Rep 9:5278

Ljungqvist FC (2010) A new reconstruction of temperature vari-
ability in the extra-tropical Northern Hemisphere during the 
last two millennia. Geogr Ann A 92:339–351

Makowski K, Wild M, Ohmura A (2008) Diurnal temperature range 
over Europe between 1950 and 2005. Atmos Chem Phys 
8:6483–6498

Margaritelli G, Cacho I, Català A, Barra M, Bellucci LG, Lubritto 
C, Rettori R, Lirer F (2020) Persistent warm Mediterranean 
surface waters during the Roman period. Sci Rep 10:10431

McKitrick RR, Michaels PJ (2007) Quantifying the influence of 
anthropogenic surface processes and inhomogeneities on grid-
ded global climate data. J Geophys Res&nbsp;112: D24S09

McNider RT, Steeneveld GJ, Holtslag AAM, Pielke RA, Mackaro S, 
Pour-Biazar A, Walters J, Nair U, Christy J (2012) Response 
and sensitivity of the nocturnal boundary layer over land to 
added longwave radiative forcing. J Geophys Res 117:D14106

Menne MJ, Williams CN, Gleason BE, Rennie JJ, Lawrimore JH, 
Menne MJ et al (2018) The Global Historical Climatology 
Network Monthly Temperature Dataset, Version 4. J Clim 
31(24):9835–9854

Mestre O, Domonkos P, Picard F, Auer I, Robin S, Lebarbier E, 
Boehm R, Aguilar E, Guijarro J, Vertachnik G, Klancar M, 
Dubuisson B, Stepanek P (2013) HOMER: a homogenization 
software - methods and applications. IDOJARAS 117:47–67

Mitchell JM (1953) On the Causes of Instrumentally Observed Secu-
lar Temperature Trends. J Atmos Sci 10:244–261

Mitchell JM, Jr (1961) The Temperature of Cities. Weatherwise 
14:224–258

Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying 
uncertainties in global and regional temperature change using 
an ensemble of observational estimates: The HadCRUT4 data-
set. J Geophys Res 117:D08101

Müller R, Müller D, Schierhorn F, Gerold G, Pacheco P (2012) 
Proximate causes of deforestation in the Bolivian lowlands: an 
analysis of spatial dynamics. Reg Environ Change 12:445–459

Oke TR (1987) Boundary Layer Climates. Second edition, New York
Parker DE (2006) A demonstration that large-scale warming is not 

urban. J Clim 19:2882–2895
Peterson TC (2003) Assessment of urban versus rural in situ surface 

temperatures in the contiguous United States: no difference 
found. J Clim 16:2941–2959

Pielke Sr RA, Nielsen-Gammon J, Davey C, Angel J, Bliss O, 
Doesken N, Cai M, Fall S, Niyogi D, Gallo K, Hale R, Hub-
bard KG, Lin X, Li H, Raman S (2007a) Documentation of 
uncertainties and biases associated with surface temperature 
measurement sites for climate change assessment. Bull Am 
Meteorol Soc 88:913–928

Pielke Sr., Davey RA, Niyogi C, D., et al., 2007b. Unresolved issues 
with the assessment of multi-decadal global land surface tem-
perature trends. J Geophys Res 112, D24S08

Pielke Sr., Mahmood RA, McAlpine R, C., 2016. Land’s complex role 
in climate change. Phys Today, 69(11), 40

Rasul A, Balzter H, Smith C (2015) Spatial variation of the daytime 
Surface Urban Cool Island during the dry season in Erbil, Iraqi 
Kurdistan, from Landsat 8. Urban Clim 14:176–186

Ren G, Zhou Y (2014) Urbanization Effect on Trends of Extreme 
Temperature Indices of National Stations over Mainland China, 
1961–2008. J Clim 27(6):2340–2360

Ren GY, Ding YH, Zhao ZC, Zheng J, Wu T, Tang G, Xu Y (2012) 
Recent progress in studies of climate change in China. Adv 
Atmos Sci 29:958–977

Ren GY, Ding YH, Tang GL (2017) An overview of mainland China 
temperature change research. J Meteorol Res 31:3–16

Rizwan AM, Dennis LYC, Liu C (2008) A review on the generation, 
determination and mitigation of Urban Heat Island. J Environ 
Sci 20:120–128

Robinson DA, Leathers DJ, Palecki MA, Dewey KF (1995) Some 
observations on climate variability as seen in daily temperature 
structure. Atmos Res 37:19–31

Saaroni H, Ben-Dor E, Bitan A, Potchter O (2000) Spatial distribution 
and microscale characteristics of the urban heat island in Tel-
Aviv, Israel. Landsc. Urban Plan 48:1–18



 N. Scafetta 

1 3

Scafetta N (2013) Discussion on climate oscillations: CMIP5 general 
circulation models versus a semi-empirical harmonic model 
based on astronomical cycles. Earth Sci Rev 126:321–357

Scafetta N (2014) Multi-scale dynamical analysis (MSDA) of sea 
level records versus PDO, AMO, and NAO indexes. Clim Dyn 
43:175–192

Scafetta N (2019) On the reliability of computer climate models. 
&nbsp;IJEGE 2019, 49–70

Scafetta N (2020) Solar Oscillations and the Orbital Invariant Inequali-
ties of the Solar System. Sol Phys 295:33

Scafetta N, Ouyang S (2019) Detection of UHI bias in China climate 
network using Tmin and Tmax surface temperature divergence. 
Global Planet Change 181:102989

Scafetta N, Mirandola A, Bianchini A (2017a) Natural climate vari-
ability, part 1: Observations versus the modeled predictions. Int 
J Heat Technol 35(Special Issue 1):S9–S17

Scafetta N, Mirandola A, Bianchini A (2017b) Natural climate variabil-
ity, part 2: Interpretation of the post 2000 temperature standstill. 
Int J Heat Technol 35(Special Issue 1):S18–S26

Scafetta N, Milani F, Bianchini A (2020) A 60-year cycle in the Mete-
orite fall frequency suggests a possible interplanetary dust forc-
ing of the Earth’s climate driven by planetary oscillations. Geo-
phys Res Lett&nbsp;47:e2020GL089954

Soon W, Connolly R, Connolly M (2015) Re-evaluating the role of 
solar variability on Northern Hemisphere temperature trends 
since the 19th century. Earth Sci Rev 150:409–452

Soon WW-H, Connolly R, Connolly M, O’Neill P, Zheng j, Ge Q, Hao 
Z, Yan H (2018) Comparing the current and early 20th century 
warm periods in China. Earth Sci Rev 185:80–101

Spencer RW, Christy JR, Braswell WD (2017) UAH Version 6 global 
satellite temperature products: Methodology and results. Asia-
Pac J Atmos Sci 53:121–130

Stewart ID (2011) A systematic review and scientific critique of meth-
odology in modern urban heat island literature. Int J Climatol 
31:200–217

Stewart ID, Oke TR (2012) Local climate zones for urban temperature 
studies. Bull Am Meterol Soc 93:1879–1900

Stohlgren TJ, Chase TN, Pielke RA, Kittel TGF, Baron J (1998) Evi-
dence that local land use practices influence regional climate 
and vegetation patterns in adjacent natural areas. Glob Change 
Biol 4:495–504

Stull RB (1988) An Introduction to Boundary Layer Meteorology, 
London

Sun X, Ren G, You Q, Ren Y, Xu W, Xue X, Zhan Y, Zhang S, Zhang 
P (2019) Global diurnal temperature range (DTR) changes since 
1901. Clim Dyn 52(5–6):3343–3356

Szegedi S, Toth T, Kapocska L, Gyarmati R (2013) Examinations on 
the meteorological factors of urban heat island developement in 
small and medium-sized towns in Hungary. Carpathian J Earth 
Environ Sci 8:209–214

Tang GL, Ren GY (2005) Reanalysis of surface air temperature change 
of the last 100 years over China. Clim Environ Res 10:791–798

Tang GL, Ding YH, Wang SW, Ren G, Liu H, Zhang L (2010) Com-
parative analysis of China surface air temperature series for the 
past 100 years. Adv Clim Change Res&nbsp;1: 11–19

Taubes G (1995) Is a Warmer Climate Wilting the Forests of the North? 
Science 267(5204):1595

Thorne PW, Menne MJ, Williams CN, Rennie JJ, Lawrimore JH, Vose 
RS et al., 2016a. Reassessing changes in diurnal temperature 

range: A new data set and characterization of data biases. J Geo-
phys Res Atmos&nbsp;121: 5115–5137

Thorne PW, Donat MG, Dunn RJH, Williams CN, Alexander LV, Cae-
sar J et al., 2016b. Reassessing changes in Diurnal Temperature 
Range: Intercomparison and evaluation of existing global dataset 
estimates. J Geophys Res Atmos&nbsp;121, 5138–5158

Venema V, Mestre O, Aguilar E et al (2012) Benchmarking homogeni-
zation algorithms for monthly data. Clim Past 8:89–115

Vose RS, Easterling DR, Gleason B (2005) Maximum and minimum 
temperature trends for the globe: an update through 2004. Geo-
phys Res Lett 32:L23822

Wang F, Ge Q (2012) Estimation of urbanization bias in observed 
surface temperature change in China from 1980 to 2009 using 
satellite land-use data. Chin Sci Bull 57:1708–1715

Wang SW, Gong DY, Zhu JH (2001) Twentieth-century climatic 
warming in China in the context of the Holocene. Holocene 
11:313–321

Wang SW, Zhu JH, Cai JN (2004) Interdecadal variability of tem-
perature and precipitation in China since 1880. Adv Atmos Sci 
21:307–313

Wang JF, Xu CD, Hu MG, Li Q, Yan Z, Zhao P, Jones P (2014) A new 
estimate of the China temperature anomaly series and uncertainty 
assessment in 1900–2006. J Geophys Res Atmos 119:1–9

Watkins R, Palmer J, Kolokotroni M, Littlefair P (2002a) The Lon-
don heat island—results from summertime monitoring. BSER 
T 23(2):97–106

Watkins R, Palmer J, Kolokotroni M, Littlefair P (2002b) The London 
Heat Island—surface and air temperature measurements in sum-
mer 2000. ASHRAE Trans 2002 108 (Pt1)

Wickham C, Rohde R, Muller RA, Wurtele J, Curry J et al (2013) 
Influence of Urban Heating on the Global Temperature Land 
Average using Rural Sites Identified from MODIS Classifica-
tions. Geoinfor Geostat: An Overview 1:2

Wilby RL, Jones PD, Lister DH (2011) Decadal variations in the noc-
turnal heat island of London. Weather 66:59–64

Wolf T, McGregor G (2013) The development of a heat wave vul-
nerability index for London, United Kingdom. Weather Clim 
Extremes 1:59–68

Wyatt M, Curry J (2014) Role of Eurasian Arctic shelf sea ice in a 
secularly varying hemispheric climate signal during the twentieth 
century. Clim Dyn 42:2763–2782

Zdunkowski WG, Welch RM, Paegle J (1976) One dimensional numer-
ical simulation of the effects of air pollution on the planetary 
boundary layer. J Atmos Sci 33:2399–2414

Zelinka MD, Myers TA, McCoy DT, Po-Chedley S, Caldwell PM, 
Ceppi P, Klein SA, Taylor KE (2020) Causes of higher climate 
sensitivity in CMIP6 models. Geophys Res Lett&nbsp;47: 
e2019GL085782

Zipper SC, Keune J, Kollet SJ (2019) Land use change impacts on 
European heat and drought: remote land-atmosphere feedbacks 
mitigated locally by shallow groundwater. Environ Res Lett 
14:011012

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Detection of non‐climatic biases in land surface temperature records by comparing climatic data and their model simulations
	Abstract
	1 Introduction
	2 Physical background
	3 Data
	4 Method
	5 DTR trend analysis
	6 Visual evidence for UHI biases in macro‐regions
	7 Comparisons between TMean trends and their model simulations in macro-regions.
	7.1  Greenland
	7.2 Three continental macro‐regions
	7.3 Instrumental and tree‐based land temperature reconstructions

	8 A tentative estimate of the non-climatic land and global warming bias
	9 Discussion and conclusion
	Acnowledgements 
	References




